Posts Tagged history

Five of Clubs: Marmites

This weekend Geneva celebrates the Fête de l’Escalade, so I made a video of the piece I wrote about various things called marmites, their nutritional value, use in soup cooking, and effectiveness against invading Savoyards. It’s been adapted slightly to work on video, and includes some destruction, a dangerous stunt, and a slight tilt I didn’t have time to correct.

Chocolate cannon for shooting marmites

I read this at the Geneva Writers’ Group on Saturday, using all the same props, and the Marmite was smashed in a way probably closer to the tradition than all the other Marmite-smashings I’ve induced. It’s the last one in the video. I am not sure how many people tried the various yeast spreads, but several told me of their preexisting preferences.

, , , , , , , , , , , , , , , ,

Leave a comment

E-cards of Yore

While you’re sending electronic cards to hundreds of your barely-remembered ones with a single click this holiday season, spare a thought for your parents and grandparents, who had to walk a long way uphill (both ways) in the snow to post their e-cards. They were so lucky; I love walking in snow.

I recreated an e-card from the pre-internet age so that young whippersnappers of today could see what they’re missing out on:

A punched card with a stamp on it and a message punched in ASCII.

Old-fashioned e-card

It’s so hard to find a good card punch these days, but people back then were resourceful, so I had to be too.

The same punch card again, but with the Swiss Army knife used to punch the holes.

Swiss soldiers could even write e-cards to their loved ones from the front

I made this in 2007 from one of the punch cards I rescued when a man I shared my office with retired, but it only just occurred to me that it was sufficiently creative to put on my blog. I didn’t have a real blog in 2007, so it’s fair enough.

There were real Swiss stamps commemorating 50 years of CERN, but I didn’t happen to have any on the day that I decided to do this, so I printed a fake one. I wrote the card in ASCII according to this. If I did it wrong, it’s because I’m not old enough to remember those days. If you know better, please share your wisdom.

, , , , , , ,

1 Comment

Qu’ainsi périssent les ennemis du Cenovis !

Fake Genevan karate-chopping two jars of different kinds of Marmite, while a Marmite de l'Escalade sits unharmed behind them.

Note: This is now available on video

This weekend is the Fête de l’Escalade, an annual commemoration of the night in 1602 when the Genevans defeated the invading Savoyards with the help of a diligent housewife and a pot of vegetable soup. I think this should be held up as an example in Good Housekeeping.

As part of this celebration, it’s traditional to smash a marmite while saying ‘Qu’ainsi périssent les ennemis de la République !’, which means ‘Thus perish the enemies of the republic!’ I happen to have several kinds of Marmite at home, mostly purchased for the tasty yeasty taste test at a Swiss party I held in New Zealand a few years ago.

The marmite at the back of this picture is a soup pot made of chocolate, usually filled with marzipan vegetables before being smashed by the youngest and oldest people present. The one at the top is British Marmite, a by-product of beer brewing rich in vitamins B1, B2, B3 and B12. It’s usually spread on toast but sometimes used to make a thin, yeast-flavoured soup. It’s probably the saltiest of all the yeast spreads I’ve tried. As far as I can tell, it is identical to the yeast spread sold as ‘Our Mate’ in New Zealand. The one at the bottom is New Zealand Marmite. It’s also a by-product of beer brewing used to spread on toast and make soup, but it tastes different, has iron in it, and is available in larger pots. It has to compete with the Australian yeast spread Vegemite, which has no iron or vitamin B12 in it and gives the illusion of being more vegetarian than Marmite.

In Geneva, however, the word ‘marmite’ is widely used to describe an even larger pot, often made of iron but rarely made of B vitamins, such as one might use to cook soup or foil invading Savoyards. In military slang, it means a shell, such as one might use to foil invading Savoyards. So when the Swiss finally discovered that they could spread the leftovers from beer brewing on their toast, they had to call it something else. To minimise the chances of having to compete with Vegemite, they chose Cenovis — a name which is known in New Zealand and Australia as a brand of multivitamin. Cenovis spread, which is rich in vitamin B1 but not B2, B3, B12 or iron, was added to Swiss military rations, so that the soldiers would be well-nourished and better able to fire marmites at invading Savoyards. It is also available as a liquid, for adding to the marmite if the vegetable soup doesn’t have enough flavour or killing power.

Cenovis multivitamin contains all the B vitamins and iron, along with plenty of other vitamins that you’d be better off getting from a pot of vegetable soup. It probably doesn’t taste very good on toast.

, , , , , , , , , , , , , , , , , , ,


Video: Apple Tablet Unboxing

I bought an iPad to make this video, so I hope you like it.

Welcome to the future, folks!

I got my first taste of the future in 1998, when I bought a secondhand Newton MessagePad 110 (introduced in 1995), after the Newton product line was discontinued. As I used it to take notes at university, jot down apronyms while on-the-go, read eBooks on a long bus trip, I had a feeling that the future would taste a lot like this. In 2002 I upgraded to a MessagePad 130 (introduced in 1997.) That’s the 130 that you can see being put into the iPad box at the end of the video. In 2003, I got a Newton eMate (introduced in 1997) and enrolled in a postgraduate mathematics course just for fun. My classmates were amazed at this fancy ‘new’ gadget, as I wrote mathematics with the stylus and typed explanations with the keyboard. There’s more about my Newtons on this old page.

I never had a MessagePad 2000, though my brother-in-law had one on loan from a colleague. It was faster than my Mac at the time, and could even run a webserver.

Now Apple is making handheld and tablet computers again, and I’ve gone back to the future. The difference is, when I use an Apple handheld now, everybody knows what it is. They’re not futuristic any more, because this is the future.

Read the rest of this entry »

, , , , , , , , , , , ,

Leave a comment

Queen of Clubs: A History of the Large Hadron Collider, part I: Conception

Between March 21 and 27, 1984, theorists, experimentalists, accelerator physicists, and experts in superconducting magnets gathered for a workshop in Lausanne and Geneva. They were not there to discuss the Large Electron Positron collider, for which excavation of a 27km near-circular tunnel would soon begin at CERN, the European Organization for Nuclear Research. They had come to discuss a possible playmate for the LEP, a collider of protons and perhaps antiprotons to be installed alongside the LEP in the same tunnel. Some nicknamed it the Juratron, after the Jura mountains under which part of it would pass. Officially, it was known as the Large Hadron Collider, or LHC.

The LHC would accelerate protons to an energy of up to 9 TeV, more than nine million times the energy of a proton at rest. To keep such high energy particles on course in a ring as small as the LEP, the LHC would need superconducting magnets with a magnetic field of 10 Tesla, about 2000 times the strength of a refrigerator magnet (pictured.) The superconductor technology available at the time could theoretically be extended to create magnetic fields of up to 6 or 7 Tesla, but substantial new developments would be necessary to reach the required 10 Tesla.

Carlo Rubbia concluded the workshop with the statement, “Perhaps the time has come for us to pause, at least until the magnet, accelerator, and detector issues have made some significant progress.” There would be no playmate for LEP just yet, but it would come.

The LEP tunnel was made big enough to fit two accelerators. By the end of 1986, only half a kilometre of it remained to be dug. A preliminary technical study on the possibility of building the LHC on top of the LEP was carried out, and it seemed like a better deal than the alternative proposition of a 1 TeV linear electron-positron collider. With the LHC and LEP together, electron-positron collisions, electron-proton and proton-proton collisions would all be possible, with protons injected by CERN’s existing proton accelerators. Nobody had managed to make strong enough superconducting magnets yet, but there was optimism that it was possible.

In 1987, the first LEP magnet was installed in the newly-completed tunnel, and the first model of an LHC dipole magnet was made. To save space and money, the two opposing proton beams would pass through separate channels within the same magnet. Studies were underway of the possibilty of using either niobium-titanium or niobium-tin for the magnets, or perhaps the recently developed ‘high temperature’ superconductors. The next year, a niobium-titanium superconducting magnet was made which could provide a magnetic field of more than 9 Tesla. It was hoped that the LHC would be able to reach an energy comparable to the 20 TeV of the Superconducting Super Collider being built in Texas.

In the early afternoon of Bastille day 1989, physicists were jublilant to see the evidence of the first beam of positrons sent around the LEP: an unassuming white oval on a blue screen. But for all the eyes fixed on the LEP, more than ever were looking forward to its companion, the LHC.

Many studies were carried out on the feasibility of the superconducting magnets, cryogenics, and civil engineering that would be required. All confirmed that such a machine could indeed be constructed. Two models of LHC dipole magnets in niobium titanium, and one in niobium-tin, both produced fields of around 9.4 Tesla. A cost estimation and construction schedule for the LHC were established: it could be put into service by 1998, while only slightly disturbing the functioning of the LEP.

In 1990, more detailed plans of the LHC were prepared, and delegates from CERN member states proposed the idea to their respective states, expecting a decision by 1992. A timely decision would mean that the LHC could start operations in 1998, as predicted, for a cost comparable to that of the LEP. With 9 metre magnets creating a field of 10 Tesla, it would collide two beams of protons with an energy of up to 7.7 TeV each. Four prototype 1 metre long 10 Tesla dipole magnets were ordered from four different companies. A life-sized prototype was constructed, with a field strength of 7.5 Tesla.

On 20 December, 1991, the CERN council unanimously approved the LHC project. By that time, thousands of hours of on supercomputers had been spent simulating the interactions that would occur in the LHC. The council asked that all technical and financial details be worked out by 1993.

Preparations picked up momentum in 1992. A conference in March on the LHC attracted 600 scientists. In October, the LHC Experiments Committee received letters of intent for three possible LHC experiments: ATLAS (A Toroidal LHC Apparatus), CMS (Compact Muon Solenoid) and L3P (Lepton and Photon Precision Physics.)

Although the required 10 Tesla field had already been achieved, it was considered too difficult to maintain. Therefore the decision was taken to elongate the dipole magnets to 13.5 metres by deplacing other elements. This would increase the time that the protons were exposed to the field, lowering the necessary field strength to 9.5 Tesla.

In 1993, two of the proposed experiments, CMS and ATLAS were approved, along with a new proposition, ALICE (A Large Ion Collider Experiment.) In December 1993, exactly two years after the council’s approval of the LHC, the requested information was presented. Construction could soon begin.

Read the rest of this entry »

, , , ,

Leave a comment

%d bloggers like this: