Archive for April 14th, 2013

Four of Hearts: Nucleosynthesis (rapidly processed)


Americium four of hearts, because it's a source of neutrons.Oft upon a spacetime,
a red star gets the blues
and puffs up like a superstar
with nothing left to fuse.
Pushing hot and heavy,
it finds its stellar rise
affords a new and rapid way
to nucleosynthesise.

Squirts new heavy ions
to interstellar dust
then collapses in and pulls some back
and into stellar crust.
Newly Lilliputian,
compressed by weight of all
our star invites its nearest friends
to join the neutron ball.

Millimetre mountains
on kilometres-round
neutron star where mass of more
than one Earth Sun is bound.
Heart a seething chaos,
skin so smooth and hard,
beneath the skin, too densely packed
to tell each piece apart.

Love-crossed star starts dancing
with friend who heard the call:
another star-crossed lover,
another neutron ball.
They pull each other closer,
spin fast, and by and by,
they kiss in bursts of gamma rays
and heavy nuclei.

Once upon a planet
of star-fused chemistry
some humans sought to learn of how
their atoms came to be:
Made their own large nuclides
used traps to measure mass,
then calculated where they’d fit
in star’s electron gas.

Nuclides so unstable
they fall apart on Earth,
at pressure, they survive in dead
star hotbed’s upper berth:
Isotopes of nickel,
and lots of iron too,
zinc-80 (deeper than we thought)
But no zinc-82.

Once upon a line graph,
those data points could show,
a hint of where and when and how
big elements may grow.
Is it supernovas,
or casanovas’ kiss?
Is it neither? Some of both?
And what else did we miss?

Probed big atoms’ origins,
but all their parents knew:
My daughter works in science labs;
don’t ask me what they do!
Tried to tell the physicists
but all that students knew:
zinc-80 (deeper than they thought)
and no zinc-82.

This is my understanding (as a mere mathematician/code monkey) of the cover story of this month’s CERN Courier. I picked up a copy on Friday evening on the way out of work, and decided I could interview people I know in ISOLDE and write an article about it in 400 words or fewer in order to apply for an editorial trainee scheme at New Scientist magazine, since applications weren’t due until Monday and I needed a writing project for the weekend anyway. Once I’d read the article and enough supporting material to understand it, I realised I probably wouldn’t end up writing the article. I wasn’t sure I really understood the significance of it, I didn’t have access to the original paper from home, and what’s more, the result was a month and a half old, which is far too old, according to New Scientist’s freelancing guidelines. It might work for getting an internship at Old Scientist, but I probably wouldn’t like that because I’m the editor-in-chief at Old Scientist and I’d probably treat my interns poorly.

Anyhow, I decided I’d just appoint myself New Scientist’s, or maybe the CERN Courier’s, unofficial contributing troubadour, and write poems about their feature articles. If Popular Science can have a contributing troubadour, so can New Scientist. So, certain I couldn’t adequately explain ISOLTRAP’s result in 400 words or fewer, I set about writing a poem about it, which came out at 302 words. I tackled it rather longitudinally though; it doesn’t go much into the specifics (or even mention the r-process or ISOLTRAP by name) and occasionally I may sacrifice clarity for rhythm or puns, but I tried to give all the context needed to have some kind of understanding of the final result. This article is probably easier to understand than the CERN Courier one. One of the many interesting things I learnt while researching this is that stars actually get the blues before going supernova.

, , , , , , , , ,

Leave a comment